Flexible Epoxy Resin Formed Upon Blending with a Triblock Copolymer through Reaction-Induced Microphase Separation
نویسندگان
چکیده
In this study, we used diglycidyl ether bisphenol A (DGEBA) as a matrix, the ABA block copolymer poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic F127) as an additive, and diphenyl diaminosulfone (DDS) as a curing agent to prepare flexible epoxy resins through reaction-induced microphase separation (RIMPS). Fourier transform infrared spectroscopy confirmed the existence of hydrogen bonding between the poly(ethylene oxide) segment of F127 and the OH groups of the DGEBA resin. Small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy all revealed evidence for the microphase separation of F127 within the epoxy resin. Glass transition temperature (Tg) phenomena and mechanical properties (modulus) were determined through differential scanning calorimetry and dynamic mechanical analysis, respectively, of samples at various blend compositions. The modulus data provided evidence for the formation of wormlike micelle structures, through a RIMPS mechanism, in the flexible epoxy resin upon blending with the F127 triblock copolymer.
منابع مشابه
Hydrogen Bonding-Mediated Microphase Separation during the Formation of Mesoporous Novolac-Type Phenolic Resin Templated by the Triblock Copolymer, PEO-b-PPO-b-PEO
After blending the triblock copolymer, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-b-PPO-b-PEO) with novolac-type phenolic resin, Fourier transform infrared spectroscopy revealed that the ether groups of the PEO block were stronger hydrogen bond acceptors for the OH groups of phenolic resin than were the ether groups of the PPO block. Thermal curing with hexamethylenetetramine ...
متن کاملReaction-Induced Microphase Separation in Epoxy Thermosets Containing Block Copolymers Composed of Polystyrene and Poly(-caprolactone): Influence of Copolymer Architectures on Formation of Nanophases
We report an investigation of the influence of block copolymer architectures on formation of nanophases in epoxy thermosets via reactioninduced microphase separation approach. Toward this end, three binary block copolymers composed of polystyrene (PS) and poly(ε-caprolactone) (PCL) were synthesized via the combination of ring-opening polymerization (ROP) and atomic transfer radical polymerizati...
متن کاملMicrophase separation induced in the melt of Pluronic copolymers by blending with a hydrogen bonding urea-urethane end-capped supramolecular polymer.
Blending with a hydrogen-bonding supramolecular polymer is shown to be a successful novel strategy to induce microphase-separation in the melt of a Pluronic polyether block copolymer. The supramolecular polymer is a polybutadiene derivative with urea-urethane end caps. Microphase separation is analysed using small-angle X-ray scattering and its influence on the macroscopic rheological propertie...
متن کاملThe Effect of Epoxy-Polysulfide Copolymer Curing Methods on Mechanical-Dynamical and Morphological Properties
Epoxy – Polysulfide copolymers without or with low amounts of epoxy in their structure have poor mechanical properties in oxidative curing system.To strengthen the mechanical properties of polysulfide elastomer inclusion of epoxy resin (Epon828) as hard segment was studied. FT-IR spectroscopy and rheometry were used to verify the formation of epoxy-polysulfide copolymer. Results obtained f...
متن کاملPhase ordering mechanism of triblock copolymers . A dynamic density functional study
Submitted for the MAR05 Meeting of The American Physical Society Phase ordering mechanism of triblock copolymers. A dynamic density functional study JIANFENG XIA, FENG QIU, HONGDONG ZHANG, YULIANG YANG — Using dynamic density functional theory (DDFT), we studied the morphology and kinetics of microphase separation of linear triblock copolymers. ABC triblock copolymers with equal and unequal int...
متن کامل